Multiscale discontinuous Petrov-Galerkin method for the multiscale elliptic problems
نویسندگان
چکیده
منابع مشابه
Discontinuous Galerkin Multiscale Methods for Elliptic Problems
Discontinuous Galerkin Multiscale Methods for Elliptic Problems Daniel Elfverson In this paper a continuous Galerkin multiscale method (CGMM) and a discontinuous Galerkin multiscale method (DGMM) are proposed, both based on the variational multiscale method for solving partial differential equations numerically. The solution is decoupled into a coarse and a fine scale contribution, where the fi...
متن کاملAn Adaptive Discontinuous Galerkin Multiscale Method for Elliptic Problems
An adaptive discontinuous Galerkin multiscale method driven by an energy norm a posteriori error bound is proposed. The method is based on splitting the problem into a coarse and fine scale. Localized fine scale constituent problems are solved on patches of the domain and are used to obtain a modified coarse scale equation. The coarse scale equation has considerably less degrees of freedom than...
متن کاملA Multiscale Discontinuous Galerkin Method
We propose a new class of Discontinuous Galerkin (DG) methods based on variational multiscale ideas. Our approach begins with an additive decomposition of the discontinuous finite element space into continuous (coarse) and discontinuous (fine) components. Variational multiscale analysis is used to define an interscale transfer operator that associates coarse and fine scale functions. Compositio...
متن کاملA Discontinuous Galerkin Multiscale Method for Convection-diffusion Problems
We propose an extension of the discontinuous Galerkin local orthogonal decomposition multiscale method, presented in [14], to convection-diffusion problems with rough, heterogeneous, and highly varying coefficients. The properties of the multiscale method and the discontinuous Galerkin method allows us to better cope with multiscale features as well as interior/boundary layers in the solution. ...
متن کاملDiscontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales
An analysis of a multiscale symmetric interior penalty discontinuous Galerkin finite element method for the numerical discretization of elliptic problems with multiple scales is proposed. This new method, first described in [A. Abdulle, C.R. Acad. Sci. Paris, Ser. I 346 (2008)] is based on numerical homogenization. It allows to significantly reduce the computational cost of a fine scale discont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Methods for Partial Differential Equations
سال: 2017
ISSN: 0749-159X
DOI: 10.1002/num.22191